Home | Sources Directory | News Releases | Calendar | Articles | | Contact |  

Heredity

For the journal of the same name, see Heredity
Part of the Biology series on
Genetics
Image showing the structure of DNA.
Key components

Chromosome
DNA – RNA
Genome
Heredity
Mutation
Nucleotide
Variation

Glossary
Index
Outline

History and topics

Introduction
History

Classical genetics
Evolution – Molecular
Mendelian inheritance
Molecular genetics

Research

DNA sequencing
Genetic engineering
Genomics – Topics
Medical genetics

Branches in genetics

Biology portalv ' d ' e 

Heredity is the passing of traits to offspring (from its parent or ancestors). This is the process by which an offspring cell or organism acquires or becomes predisposed to the characteristics of its parent cell or organism. Through heredity, variations exhibited by individuals can accumulate and cause a species to evolve. The study of heredity in biology is called genetics, which includes the field of epigenetics.

ancients had a variety of ideas about heredity: Theophrastus proposed that male flowers caused female flowers to ripen; Hippocrates speculated that "seeds" were produced by various body parts and transmitted to offspring at the time of conception, and Aristotle thought that male and female semen mixed at conception. Aeschylus, in 458 BC, proposed the male as the parent, with the female as a "nurse for the young life sown within her."

Various hereditary mechanisms were envisaged without being properly tested or quantified. These included blending inheritance and the inheritance of acquired traits. Nevertheless, people were able to develop domestic breeds of animals as well as crops through artificial selection. The inheritance of acquired traits also formed a part of early Lamarckian ideas on evolution.

In the 9th century AD, the Afro-Arab writer Al-Jahiz considered the effects of the environment on the likelihood of an animal to survive, and first described the struggle for existence.[1][2][unreliable source?] His ideas on the struggle for existence in the Book of Animals have been summarized as follows:

"Animals engage in a struggle for existence; for resources, to avoid being eaten and to breed. Environmental factors influence organisms to develop new characteristics to ensure survival, thus transforming into new species. Animals that survive to breed can pass on their successful characteristics to offspring."[3][unreliable source?]

In 1000 AD, the Arab physician, Abu al-Qasim al-Zahrawi (known as Albucasis in the West), wrote the first clear description of haemophilia, a hereditary genetic disorder, in his Al-Tasrif. In this work, he wrote of an Andalusian family whose males died of bleeding after minor injuries.[4][unreliable source?]

During the 1700s, Dutch microscopist Antonie van Leeuwenhoek (1632'1723) discovered "animalcules" in the sperm of humans and other animals. Some scientists speculated they saw a "little man" (homunculus) inside each sperm. These scientists formed a school of thought known as the "spermists." They contended the only contributions of the female to the next generation were the womb in which the homunculus grew, and prenatal influences of the womb. An opposing school of thought, the ovists, believed that the future human was in the egg, and that sperm merely stimulated the growth of the egg. Ovists thought women carried eggs containing boy and girl children, and that the gender of the offspring was determined well before conception.

Pangenesis was an idea that males and females formed "pangenes" in every organ. These pangenes subsequently moved through their blood to the genitals and then to the children. The concept originated with the ancient Greeks, and influenced biology until as recently as a century ago. The terms "blood relative," "bloodline," "full-blooded," and "royal blood" are relics of pangenesis. Francis Galton, Charles Darwin's cousin, experimentally tested and disproved pangenesis during the 1870s.

Contents

[edit] Types of heredity

Dominant and recessive

An allele is said to be dominant if it is always expressed in the appearance of an organism (phenotype). For example, in peas the allele for green pods, G, is dominant to that for yellow pods, g. Since the allele for green pods is dominant, pea plants with the pair of alleles GG (homozygote) or Gg (heterozygote) will have green pods. The allele for yellow pods is recessive. The effects of this allele are only seen when it is present in both chromosomes, gg (homozygote).

The description of a mode of biological inheritance consists of three main categories:

1. Number of involved loci
2. Involved chromosomes
3. Correlation genotype'phenotype

These three categories are part of every exact description of a mode of inheritance in the above order. Additionally, more specifications may be added as follows:

4. Coincidental and environmental interactions
5. Sex-linked interactions
6. Locus'locus interactions

Determination and description of a mode of inheritance is primarily achieved through statistical analysis of pedigree data. In case the involved loci are known, methods of molecular genetics can also be employed.

[edit] Charles Darwin: theory of evolution

When Charles Darwin proposed his theory of evolution in 1859, one of its major problems was the lack of an underlying mechanism for heredity. Darwin believed in a mix of blending inheritance and the inheritance of acquired traits (pangenesis). Blending inheritance would lead to uniformity across populations in only a few generations and thus would remove variation from a population on which natural selection could act. This led to Darwin adopting some Lamarckian ideas in later editions of On the Origin of Species and his later biological works. Darwin's primary approach to heredity was to outline how it appeared to work (noticing that traits could be inherited which were not expressed explicitly in the parent at the time of reproduction, that certain traits could be sex-linked, etc.) rather than suggesting mechanisms.

Darwin's initial model of heredity was adopted by, and then heavily modified by, his cousin Francis Galton, who laid the framework for the biometric school of heredity. Galton rejected the aspects of Darwin's pangenesis model which relied on acquired traits.

The inheritance of acquired traits was shown to have little basis in the 1880s when August Weismann cut the tails off many generations of mice and found that their offspring continued to develop tails.

[edit] Gregor Mendel: father of modern genetics

The idea of particulate inheritance of genes can be attributed to the Moravian[5] monk Gregor Mendel who published his work on pea plants in 1865. However, his work was not widely known and was rediscovered in 1901. It was initially assumed the Mendelian inheritance only accounted for large (qualitative) differences, such as those seen by Mendel in his pea plants'and the idea of additive effect of (quantitative) genes was not realised until R.A. Fisher's (1918) paper, "The Correlation Between Relatives on the Supposition of Mendelian Inheritance."

[edit] Modern development of genetics and heredity

In the 1930s, work by Fisher and others resulted in a combination of Mendelian and biometric schools into the modern evolutionary synthesis. The modern synthesis bridged the gap between experimental geneticists and naturalists; and between both and palaeontologists, stating that:[6][7]

  1. All evolutionary phenomena can be explained in a way consistent with known genetic mechanisms and the observational evidence of naturalists.
  2. Evolution is gradual: small genetic changes, recombination ordered by natural selection. Discontinuities amongst species (or other taxa) are explained as originating gradually through geographical separation and extinction (not saltation).
  3. Selection is overwhelmingly the main mechanism of change; even slight advantages are important when continued. The object of selection is the phenotype in its surrounding environment. The role of genetic drift is equivocal; though strongly supported initially by Dobzhansky, it was downgraded later as results from ecological genetics were obtained.
  4. The primacy of population thinking: the genetic diversity carried in natural populations is a key factor in evolution. The strength of natural selection in the wild was greater than expected; the effect of ecological factors such as niche occupation and the significance of barriers to gene flow are all important.
  5. In palaeontology, the ability to explain historical observations by extrapolation from micro to macro-evolution is proposed. Historical contingency means explanations at different levels may exist. Gradualism does not mean constant rate of change.

The idea that speciation occurs after populations are reproductively isolated has been much debated. In plants, polyploidy must be included in any view of speciation. Formulations such as 'evolution consists primarily of changes in the frequencies of alleles between one generation and another' were proposed rather later. The traditional view is that developmental biology ('evo-devo') played little part in the synthesis, but an account of Gavin de Beer's work by Stephen Jay Gould suggests he may be an exception.[8]

Almost all aspects of the synthesis have been challenged at times, with varying degrees of success. There is no doubt, however, that the synthesis was a great landmark in evolutionary biology. It cleared up many confusions, and was directly responsible for stimulating a great deal of research in the post-World War II era.

Trofim Lysenko however caused a backlash of what is now called Lysenkoism in the Soviet Union when he emphasised Lamarckian ideas on the inheritance of acquired traits. This movement affected agricultural research and led to food shortages in the 1960s and seriously affected the USSR.

[edit] See also

[edit] Notes and references

  1. ^ Conway Zirkle (1941). Natural Selection before the "Origin of Species", Proceedings of the American Philosophical Society 84 (1), p. 71-123.
  2. ^ Mehmet Bayrakdar (Third Quarter, 1983). "Al-Jahiz And the Rise of Biological Evolutionism", The Islamic Quarterly. London. [1]
  3. ^ Gary Dargan, Intelligent Design, Encounter, ABC.
  4. ^ Patricia Skinner (2001), Unani-tibbi, Encyclopedia of Alternative Medicine
  5. ^ Henig, Robin Marantz (2000). The Monk in the Garden : The Lost and Found Genius of Gregor Mendel, the Father of Genetics. Houghton Mifflin. ISBN 0-395-97765-7. "The article, written by an obscure Moravian monk named Gregor Mendel" 
  6. ^ Mayr & Provine 1998
  7. ^ Mayr E. 1982. The growth of biological thought: diversity, evolution & inheritance. Harvard, Cambs. p567 et seq.
  8. ^ Gould S.J. Ontogeny and phylogeny. Harvard 1977. p221-2

[edit] External links



Related Articles & Resources

Sources Subject Index - Experts, Sources, Spokespersons

Sources Select Resources Articles







This article is based on one or more articles in Wikipedia, with modifications and additional content by SOURCES editors. This article is covered by a Creative Commons Attribution-Sharealike 3.0 License (CC-BY-SA) and the GNU Free Documentation License (GFDL). The remainder of the content of this website, except where otherwise indicated, is copyright SOURCES and may not be reproduced without written permission. (For information use the Contact form.)

SOURCES.COM is an online portal and directory for journalists, news media, researchers and anyone seeking experts, spokespersons, and reliable information resources. Use SOURCES.COM to find experts, media contacts, news releases, background information, scientists, officials, speakers, newsmakers, spokespeople, talk show guests, story ideas, research studies, databases, universities, associations and NGOs, businesses, government spokespeople. Indexing and search applications by Ulli Diemer and Chris DeFreitas.

For information about being included in SOURCES as a expert or spokesperson see the FAQ . For partnerships, content and applications, and domain name opportunities contact us.


Sources home page