|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Slime moldNot to be confused with slime bacteria.
Slime mold (or slime mould, see spelling differences) is a broad term describing fungus-like organisms that use spores to reproduce.[1] Slime molds were formerly classified as fungi, but are no longer considered part of this kingdom.[2] Their common name refers to part of some of these organisms' life cycles where they can appear as gelatinous "slime". This is mostly seen with the myxomycetes, which are the only macroscopic slime molds. Slime molds have been found all over the world and feed on microorganisms that live in any type of dead plant material. For this reason, these organisms are usually found in soil, lawns, and on the forest floor, commonly on deciduous logs. However, in tropical areas they are also common on inflorescences, fruits and in aerial situations (e.g., in the canopy of trees). In urban areas, they are found on mulch or even in the leaf mold in gutters. One of the most commonly encountered slime molds, both in nature in forests in the temperate zones of the earth as well as in classrooms and laboratories is the yellow Physarum polycephalum. Most slime mold are smaller than a few centimeters, but some species may reach sizes of up to several square meters and masses of up to 30 grams.[3] Many have striking colours such as yellow, brown and white.
[edit] TaxonomySlime molds can generally be divided into two main groups.
Slime molds as a group, are polyphyletic. They were originally represented by the subkingdom Gymnomycota in the Fungi kingdom and included the defunct phyla Myxomycota, Acrasiomycota and Labyrinthulomycota. Today, slime molds have been divided between several supergroups, none of which are included in the kingdom Fungi. In more strict terms, slime molds comprise the group of the mycetozoans (myxomycetes, dictyostelids and protostelids). However, even at this level there are conflicts to be resolved. Recent molecular evidence shows that the first two groups are likely to be monophyletic; however the protostelids seem to be polyphyletic, too. For this reason, scientists are currently trying to understand the relationships among these three groups. [edit] Bikont
[edit] Amoebozoa
[edit] OpisthokontFonticula is a cellular slime mold which forms a fruiting body in a volcano shape.[4] Fonticula is not closely related to either the Dictyosteliida or the Acrasidae.[5] A 2009 paper finds it to be related to Nuclearia, which in turn is related to fungi.[6] [edit] Life cycleThey begin life as amoeba-like cells. These unicellular amoebae are commonly haploid and multiply if they encounter their favorite food, bacteria. These amoebae can mate if they encounter the correct mating type and form zygotes which then grow into plasmodia. These contain many nuclei without cell membranes between them, which can grow to be meters in size. One variety is often seen as a slimy yellow network in and on rotting logs. The amoebae and the plasmodia engulf microorganisms. The plasmodium grows into an interconnected network of protoplasmic strands.[7] Within each protoplasmic strand the cytoplasmic contents rapidly stream. If one strand is carefully watched for about 50 seconds the cytoplasm can be seen to slow, stop, and then reverse direction. The streaming protoplasm within a plasmodial strand can reach speeds of up to 1.35 mm per second which is the fastest rate recorded for any micro-organism.[8] Migration of the plasmodium is accomplished when more protoplasm streams to advancing areas and protoplasm is withdrawn from rear areas. When the food supply wanes, the plasmodium will migrate to the surface of its substrate and transform into rigid fruiting bodies. The fruiting bodies or sporangia are what we commonly see, they superficially look like fungi or molds but are not related to the true fungi. These sporangia will then release spores which hatch into amoebae to begin the life cycle again.[7] [edit] PlasmodiaIn Myxomycetes, the plasmoidal portion of the life cycle only occurs after syngamy, which is the fusion of cytoplasm and nuclei of myxoamoebae or swarm cells. Therefore, all of the nuclei are diploid at this stage and mitosis occurs simultaneously throughout the organism. Myxomycete plasmodia are multinucleate masses of protoplasm that move by cytoplasmic streaming. In order for the plasmodium to move, cytoplasm must be diverted towards the leading edge from the lagging end. This process results in the plasmodium advancing in fan-like fronts. As it moves, plasmodium also gains nutrients through the phagocytosis of bacteria and small pieces of organic matter. The Myxomycete plasmodium also has the ability to subdivide and establish separate plasmodia. Conversely, separate plasmodia that are genetically similar and compatible can fuse together to create a larger plasmodium. In the event that conditions become dry, the plasmodium will form a sclerotium, essentially a dry and dormant state. In the event that conditions become moist again the sclerotium absorbs water and an active plasmodium is restored. When the food supply wanes, the Myxomycete plasmodium will enter the next stage of its life cycle forming haploid spores, often in a well-defined sporangium or other spore-bearing structure. [edit] In popular culture
[edit] See also[edit] References
[edit] External links
This article is based on one or more articles in Wikipedia, with modifications and
additional content by SOURCES editors. This article is covered by a Creative Commons
Attribution-Sharealike 3.0 License (CC-BY-SA) and the GNU Free Documentation License
(GFDL). The remainder of the content of this website, except where otherwise indicated,
is copyright SOURCES and may not be reproduced without written permission.
(For information use the
Contact form.)
SOURCES.COM is an online portal and directory for journalists, news media, researchers and anyone seeking experts, spokespersons, and reliable information resources. Use SOURCES.COM to find experts, media contacts, news releases, background information, scientists, officials, speakers, newsmakers, spokespeople, talk show guests, story ideas, research studies, databases, universities, associations and NGOs, businesses, government spokespeople. Indexing and search applications by Ulli Diemer and Chris DeFreitas. For information about being included in SOURCES as a expert or spokesperson see the FAQ . For partnerships, content and applications, and domain name opportunities contact us. |