|
||||||||||
|
Fourier transform infrared spectroscopy"FTIR" redirects here. FTIR may also refer to Frustrated total internal reflection.
Fourier transform infrared spectroscopy (FTIR)[1] is a technique which is used to obtain an infrared spectrum of absorption, emission, photoconductivity or Raman scattering of a solid, liquid or gas. An FTIR spectrometer simultaneously collects spectral data in a wide spectral range. This confers a significant advantage over a dispersive spectrometer which measures intensity over a narrow range of wavelengths at a time. FTIR technique has made dispersive infrared spectrometers all but obsolete (except sometimes in the near infrared) and opened up new applications of infrared spectroscopy. The term Fourier transform infrared spectroscopy originates from the fact that a Fourier transform (a mathematical algorithm) is required to convert the raw data into the actual spectrum. For other uses of this kind of technique, see Fourier transform spectroscopy.
[edit] Conceptual introductionThe goal of any absorption spectroscopy (FTIR, ultraviolet-visible ("UV-Vis") spectroscopy, etc.) is to measure how well a sample absorbs light at each wavelength. The most straightforward way to do this, the "dispersive spectroscopy" technique, is to shine a monochromatic light beam at a sample, measure how much of the light is absorbed, and repeat for each different wavelength. (This is how UV-Vis spectrometers work, for example.) Fourier transform spectroscopy is a less intuitive way to obtain the same information. Rather than shining a monochromatic beam of light at the sample, this technique shines a beam containing many different frequencies of light at once, and measures how much of that beam is absorbed by the sample. Next, the beam is modified to contain a different combination of frequencies, giving a second data point. This process is repeated many times. Afterwards, a computer takes all this data and works backwards to infer what the absorption is at each wavelength. The beam described above is generated by starting with a broadband light source'one containing the full spectrum of wavelengths to be measured. The light shines into a certain configuration of mirrors, called a Michelson interferometer, that allows some wavelengths to pass through but blocks others (due to wave interference). The beam is modified for each new data point by moving one of the mirrors; this changes the set of wavelengths that pass through. As mentioned, computer processing is required to turn the raw data (light absorption for each mirror position) into the desired result (light absorption for each wavelength). The processing required turns out to be a common algorithm called the Fourier transform (hence the name, "Fourier transform spectroscopy"). The raw data is sometimes called an "interferogram". [edit] Michelson interferometerMain article: Michelson interferometer
In a Michelson interferometer adapted for FTIR, light from the polychromatic infrared source, approximately a black-body radiator, is collimated and directed to a beam splitter. Ideally 50% of the light is reflected towards the fixed mirror and 50% is transmitted towards the moving mirror. Light is reflected from the two mirrors back to the beam splitter and (ideally) 50% of the original light passes into the sample compartment. There, the light is focussed on the sample. On leaving the sample compartment the light is refocused on to the detector. The difference in optical path length between the two arms to the interferometer is known as the retardation. An interferogram is obtained by varying the retardation and recording the signal from the detector for various values of the retardation. The form of the interferogram when no sample is present depends on factors such as the variation of source intensity and splitter efficiency with wavelength. This results in a maximum at zero retardation, when there is constructive interference at all wavelengths, followed by series of "wiggles". The position of zero retardation is determined accurately by finding the point of maximum intensity in the interferogram. When a sample is present the background interferogram is modulated by the presence of absorption bands in the sample. There are two principle advantages for a FT spectrometer compared to a scanning (dispersive) spectrometer.[2][3]
Other minor advantages include less sensitivity to stray light,[3] and "Connes' advantage" (better wavelength accuracy)[3], while a disadvantage is that FTIR cannot use the advanced electronic filtering techniques that often makes its signal-to-noise ratio inferior to that of dispersive measurements.[3] [edit] ResolutionThe interferogram belongs in the length domain. Fourier transform (FT) inverts the dimension, so the FT of the interferogram belongs in the reciprocal length domain, that is the wavenumber domain. The spectral resolution in wavenumbers per cm is equal to the reciprocal of the maximum retardation in cm. Thus a 4 cm'1 resolution will be obtained if the maximum retardation is 0.25 cm; this is typical of the cheaper FTIR instruments. Much higher resolution can be obtained by increasing the maximum retardation. This is not easy as the moving mirror must travel in a near-perfect straight line. The use of corner-cube mirrors in place of the flat mirrors is helpful as an outgoing ray from a corner-cube mirror is parallel to the incoming ray, regardless of the orientation of the mirror about axes perpendicular to the axis of the light beam. Connes measured in 1966 the temperature of the atmosphere of Venus by recording the vibration-rotation spectrum of Venusian CO2 at 0.1 cm'1 resolution.[4] Michelson himself attempted to resolve the hydrogen Hî� emission band in the spectrum of a hydrogen atom into its two components by using his interferometer.[1] p25 A spectrometer with 0.001 cm'1 resolution is now available commercially from Bruker. The throughput advantage is important for high-resolution FTIR as the monochromaor in a dispersive instrument with the same resolution would have very narrow entrance and exit slits. [edit] Beam splitterThe beam-splitter can not be made of a common glass, as it is opaque to infrared radiation of wavelengths longer than about 2.5 î�m. A thin film, usually of a plastic material, is used instead. However, as any material has a limited range of optical transmittance, several beam-splitters are used interchangeably to cover a wide spectral range. [edit] Fourier transformThe interferogram in practice consists of a set of intensities measured for discrete values of retardation. The difference between successive retardation values is constant. Thus, a discrete Fourier transform is needed. The fast Fourier transform (FFT) algorithm is used. [edit] Far-infrared FTIRThe first FTIR spectrometers were developed for far-infrared range. The reason for this has to do with the mechanical tolerance needed for good optical performance, which is related to the wavelength of the light being used. For the relatively long wavelengths of the far infrared (~10 î�m), tolerances are adequate, whereas for the rock-salt region tolerances have to better than 1 î�m. A typical instrument was the cube interferometer developed at the NPL[5] and marketed by Grubb Parsons. It used a stepper motor to drive the moving mirror, recording the detector response after each step was completed. [edit] Mid-infrared FTIRWith the advent of cheap microcomputers it became possible to have a computer dedicated to controlling the spectrometer, collecting the data, doing the Fourier transform and presenting the spectrum. This provided the impetus for the development of FTIR spectrometers for the rock-salt region. The problems of manufacturing ultra-high precision optical and mechanical components had to be solved. A wide range of instrument is now available commercially. Although instrument design has become more sophisticated, the basic principles remain the same. Nowadays, the moving mirror of the interferrometer moves at a constant velocity, and sampling of the interferogram is triggered by finding zero-crossings in the fringes of a secondary interferometer lit by a helium-neon laser. This confers high wavenumber accuracy on the resulting infrared spectrum and avoids wavenumber calibration errors. [edit] Near-infrared FTIRMain article: Near-infrared spectroscopy
The near-infrared region spans the wavelength range between the rock-salt region and the start of the visible region at about 750 nm. Overtones of fundamental vibrations can be observed in this region. It is used mainly in industrial applications such as process control. [edit] ApplicationsFTIR can be used in all applications where a dispersive spectrometer was used in the past (See external links). In addition, the multiplex and throughput advantages have opened up new areas of application. These include
[edit] References
[edit] External links
This article is based on one or more articles in Wikipedia, with modifications and
additional content by SOURCES editors. This article is covered by a Creative Commons
Attribution-Sharealike 3.0 License (CC-BY-SA) and the GNU Free Documentation License
(GFDL). The remainder of the content of this website, except where otherwise indicated,
is copyright SOURCES and may not be reproduced without written permission.
(For information use the
Contact form.)
SOURCES.COM is an online portal and directory for journalists, news media, researchers and anyone seeking experts, spokespersons, and reliable information resources. Use SOURCES.COM to find experts, media contacts, news releases, background information, scientists, officials, speakers, newsmakers, spokespeople, talk show guests, story ideas, research studies, databases, universities, associations and NGOs, businesses, government spokespeople. Indexing and search applications by Ulli Diemer and Chris DeFreitas. For information about being included in SOURCES as a expert or spokesperson see the FAQ . For partnerships, content and applications, and domain name opportunities contact us. |