|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
PancreasFor other uses, see Pancreas (disambiguation).
This article is about the bodily organ. For culinary use of animal pancreas, see Sweetbread.
The pancreas is a gland organ in the digestive and endocrine system of vertebrates. It is both an endocrine gland producing several important hormones, including insulin, glucagon, and somatostatin, as well as an exocrine gland, secreting pancreatic juice containing digestive enzymes that pass to the small intestine. These enzymes help to further break down the carbohydrates, proteins, and fats in the chyme.
[edit] HistologyUnder a microscope, stained sections of the pancreas reveal two different types of parenchymal tissue.[2] Lightly staining clusters of cells are called islets of Langerhans, which produce hormones that underlie the endocrine functions of the pancreas. Darker staining cells form acini connected to ducts. Acinar cells belong to the exocrine pancreas and secrete digestive enzymes into the gut via a system of ducts.
[edit] FunctionThe pancreas is a dual-function gland, having features of both endocrine and exocrine glands. [edit] EndocrineMain article: Endocrine pancreas
The part of the pancreas with endocrine function is made up of approximately a million[3] cell clusters called islets of Langerhans. Four main cell types exist in the islets. They are relatively difficult to distinguish using standard staining techniques, but they can be classified by their secretion: î� cells secrete glucagon (increase glucose in blood), î� cells secrete insulin (decrease glucose in blood), î� cells secrete somatostatin (regulates/stops î� and î� cells), and PP cells secrete pancreatic polypeptide.[4] The islets are a compact collection of endocrine cells arranged in clusters and cords and are crisscrossed by a dense network of capillaries. The capillaries of the islets are lined by layers of endocrine cells in direct contact with vessels, and most endocrine cells are in direct contact with blood vessels, by either cytoplasmic processes or by direct apposition. According to the volume The Body, by Alan E. Nourse,[5] the islets are "busily manufacturing their hormone and generally disregarding the pancreatic cells all around them, as though they were located in some completely different part of the body." [edit] RegulationThe pancreas receives regulatory innervation via hormones in the blood and through the autonomic nervous system. These two inputs regulate the secretory activity of the pancreas.
[edit] Anatomy[edit] PositionThe pancreas lies in the epigastrium and left hypochondrium areas of the abdomen [edit] Parts
[edit] Blood Supply[edit] Arterial SupplyThe superior pancreaticoduodenal artery from gastroduodenal artery and the inferior pancreaticoduodenal artery from superior mesenteric artery run in the groove between the pancreas and duodenum and supply the head of pancreas. The pancreatic branches of splenic artery also supply the neck, body and tail of the pancreas. The largest of those branches is called the arteria pancreatica magna; its occlusion, although rare, is fatal. [edit] Venous DrainageThe body and neck of the pancreas drain into splenic vein; the head drains into the superior mesenteric and portal veins. [edit] Lymphatic DrainageLymph is drained via the splenic, celiac and superior mesenteric lymph nodes. [edit] DiseasesMain article: Pancreatic disease
Because the pancreas is a storage depot for digestive enzymes, injury to the pancreas is potentially very dangerous. A puncture of the pancreas generally requires prompt and experienced medical intervention. Pancreatic cancers, particularly cancer of the exocrine pancreas, remain one of the most deadly cancers, and the mortality rate is very high. Diabetes mellitus type 1 is a chronic autoimmune disorder in which the immune system attacks the insulin-secreting cells in the pancreas. [edit] HistoryThe pancreas was first identified for western civilization by Herophilus (335'280 BC), a Greek anatomist and surgeon. Only a few hundred years later, Ruphos, another Greek anatomist, gave the pancreas its name. The term "pancreas" is derived from the Greek πá��î� ("all", "whole"), and î�ρî�î�ς ("flesh").[7] ' presumably because of its fleshy consistency. [edit] Embryological developmentThe pancreas forms from the embryonic foregut and is therefore of endodermal origin. Pancreatic development begins the formation of a ventral and dorsal anlage (or buds). Each structure communicates with the foregut through a duct. The ventral pancreatic bud becomes the head and uncinate process, and comes from the hepatic diverticulum. Differential rotation and fusion of the ventral and dorsal pancreatic buds results in the formation of the definitive pancreas.[8] As the duodenum rotates to the right, it carries with it the ventral pancreatic bud and common bile duct. Upon reaching its final destination, the ventral pancreatic bud fuses with the much larger dorsal pancreatic bud. At this point of fusion, the main ducts of the ventral and dorsal pancreatic buds fuse, forming the duct of Wirsung, the main pancreatic duct. Differentiation of cells of the pancreas proceeds through two different pathways, corresponding to the dual endocrine and exocrine functions of the pancreas. In progenitor cells of the exocrine pancreas, important molecules that induce differentiation include follistatin, fibroblast growth factors, and activation of the Notch receptor system.[8] Development of the exocrine acini progresses through three successive stages. These include the predifferentiated, protodifferentiated, and differentiated stages, which correspond to undetectable, low, and high levels of digestive enzyme activity, respectively. Progenitor cells of the endocrine pancreas arise from cells of the protodifferentiated stage of the exocrine pancreas.[8] Under the influence of neurogenin-3 and Isl-1, but in the absence of notch receptor signaling, these cells differentiate to form two lines of committed endocrine precursor cells. The first line, under the direction of Pax-0, forms î�- and î�- cells, which produce glucagon and pancreatic polypeptides, respectively. The second line, influenced by Pax-6, produces î�- and î�-cells, which secrete insulin and somatostatin, respectively. Insulin and glucagon can be detected in the human fetal circulation by the fourth or fifth month of fetal development.[8] [edit] In animalsPancreatic tissue is present in all vertebrate species, but its precise form and arrangement varies widely. There may be up to three separate pancreases, two of which arise from ventral buds, and the other dorsally. In most species (including humans), these fuse in the adult, but there are several exceptions. Even when a single pancreas is present, two or three pancreatic ducts may persist, each draining separately into the duodenum (or equivalent part of the foregut). Birds, for example, typically have three such ducts.[9] In teleosts, and a few other species (such as rabbits), there is no discrete pancreas at all, with pancreatic tissue being distributed diffusely across the mesentery and even within other nearby organs, such as the liver or spleen. In a few teleost species, the endocrine tissue has fused to form a distinct gland within the abdominal cavity, but otherwise it is distributed amongst the exocrine components. The most primitive arrangement, however, appears to be that of lampreys and lungfish, in which pancreatic tissue is found as a number of discrete nodules within the wall of the gut itself, with the exocrine portions being little different from other glandular structures of the intestine.[9] [edit] Pancreas in popular cultureThe second track on "Weird Al" Yankovic's album, Straight Outta Lynwood, entitled "Pancreas", centers around the pancreas and lists a summary of its functions. [edit] Additional images[edit] References
This article is based on one or more articles in Wikipedia, with modifications and
additional content by SOURCES editors. This article is covered by a Creative Commons
Attribution-Sharealike 3.0 License (CC-BY-SA) and the GNU Free Documentation License
(GFDL). The remainder of the content of this website, except where otherwise indicated,
is copyright SOURCES and may not be reproduced without written permission.
(For information use the
Contact form.)
SOURCES.COM is an online portal and directory for journalists, news media, researchers and anyone seeking experts, spokespersons, and reliable information resources. Use SOURCES.COM to find experts, media contacts, news releases, background information, scientists, officials, speakers, newsmakers, spokespeople, talk show guests, story ideas, research studies, databases, universities, associations and NGOs, businesses, government spokespeople. Indexing and search applications by Ulli Diemer and Chris DeFreitas. For information about being included in SOURCES as a expert or spokesperson see the FAQ . For partnerships, content and applications, and domain name opportunities contact us. |